1、什么是集合呢?所谓集合,是由某些确定的元素构成的整体。例如:
2、 像这些悖论还有很多,而且至今依然困扰着数学家和逻辑学家们。(罗素悖论的数学表达)。
3、(1)“不是自然数的所有东西的集合”(注:这个巨大的集合包括“披萨”、“加利福尼亚州”,同时,也包括其自身,因为此集合当然也不是自然数);
4、比如,数学的发展就曾面临过几次极其严峻的考验。距离目前最近的一次,就是20世纪罗素悖论对康托尔集合论的冲击(也称第三次数学危机)。(罗素悖论的数学表达)。
5、这句话是错的如果是事实,那么这句话就是对的,但是它是对的,就与所说的这句话是错的事实(开始设定的)不符。这句话是错的如果是假的,那么这句话就是对的,但这句话如果是对的,那么假设的这句话是错的假的结论就被推翻,也矛盾了。
6、数学家GeorgCantor和其他早期集合论者,在如今被我们称为“朴素集合论”(naivesettheory)的框架内工作。
7、一个图书馆要编纂一本书,这本书的内容是列出该图书馆所有不列出自己书名的书,那么,这本目录的书要不要列出自己的书名呢?
8、毕达哥拉斯(公元前五世纪古希腊的著名数学家与哲学家)创立了一个集政治、学术、宗教三位一体的神秘主义学派。“万物皆数”是该学派的哲学基石,主张“数”是万物的本原、始基,“一切数均可表示成整数或整数之比”则是这一学派的数学信仰。
9、从崇尚理性的文艺复兴时期起,如笛卡儿、莱布尼茨等都想创造一个理论解决一切问题。莱布尼茨甚至设想把逻辑学用数学符号表示,以后每逢争论,拿支笔一算即见分晓,其思想对符号逻辑的建立起了很大作用,但因为太超前了没能完成夙愿。
10、如果集合A不是自己的元素,那么集合A就满足“不包括自己的集合”的定义,应该是此集合的元素之矛盾。
11、百万美金的召唤——世界七大数学未解难题,究竟有希望破解吗?
12、类似的这样的故事,好莱坞曾经拍过一部电影,那就是《前目的地》。
13、在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。
14、许多着名数学家从各种不同的角度进行研究、探索,试图把微积分重新建立在可靠的基础之上。法国数学家柯西是数学分析的集大成者,魏尔斯特拉斯则是数学分析基础的主要奠基者之他改进了波尔查诺、阿贝尔、柯西的方法,首次叙述了微积分中一系列重要概念如极限、连续、导数和积分等,建立了该学科的严格体系完成了微积分的算术化。
15、尤其,这些公理立即禁止“一个集合成为其自身的一个成员”(即,自含集合)。
16、我们遇到了一个矛盾:“所有‘不’自含集合的集合”,同时必须既“是”又“不是”自己的一个成员。
17、一条线段和一条直线上的点一样多?90%的学霸都不会证明
18、图示法:为了形象表示集合,常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
19、罗素悖论由英国哲学家罗素针对集合论所提出来的一条逻辑悖论,描述为:某些集合是以自身做为元素的,例如所有概念的集合F,其集合自身F也是一个概念,所以该集合F是自身中的一个元素;某些集合是不以自身做为元素的,例如所有苹果的集合G,其集合自身不是苹果,所以该集合G不是自身中的一个元素。由此可知,任何一个集合,要么就是属于自身的,要么就是不属于自身的。现构造出一个集合R,R以所有自身不属于自身的集合作为元素,问:R是属于自身的?还是不属于自身的?如果R是属于自身的,则根据R的定义,R不能做为R中的元素,所以R是不属于自身的;而如果R是不属于自身的,则根据R的定义,R一定是R中的元素,则R是属于自身的,由此构成悖论。
20、也就是说,村子里的人分为两类,第一类人会给自己刮胡子,第二类人从不给自己刮胡子。而这名理发师不给第一类人刮胡子,而只给第二类人刮胡子。
21、M:谁给这位理发师刮脸呢?M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
22、庄朝晖,关于对角线方法和停机问题的评论,第五届两岸逻辑教学与研究学术会议,重庆西南大学,2012年4月.
23、悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明了切割几何图形中的许多重要定理。冯·纽曼奠基了博弈论。最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。
24、理发师突然发现自己非常尴尬。因为他如果回答给自己刮胡子,他就是第一类人,按照他的规矩就不应该给自己刮胡子;而如果他不给自己刮胡子,他就是第二类人,按照规矩他又应该给自己刮胡子。
25、维特根斯坦反复强调:“数学家不是发现者,而是发明者。”,又说“数学家一直在发明新的描述形式。有的人受实际需要的刺激,另一些人出自审美需要,还有些人以其他种种方式。”
26、尽管有这些限制,现代集合论的诸种公理,仍然足够灵活,结合形式逻辑的规则,它们基本上为整个现代数学提供了坚实的基础。
27、B={x|x是偶数}是一个集合,包含所有的偶数,有无限多个元素;
28、我们知道上帝是万能的,那么上帝能否造出一个他自己也举不起石头么?
29、解决这一悖论主要有两种选择,ZF公理系统和NBG公理系统。策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。这一公理系统在通过弗兰克尔的改进后被称为ZF公理系统。
30、爱因斯坦说:“我们面对的重大问题无法在我们制造出这些问题的思考层次上解决。”
31、我们不会去使用“所有事物”(everything)这种大到没边儿的词,诸如此种集合,必须被构建为诸多下属集合(subsets),而它们又要属于我们已经明确定义的一个更大的集合。
32、但是集合的元素必须是确定的。所以有些概念不能构成集合,例如”美女的集合”就是一种错误的说法,因为一个人美不美会因为其他人的感受而异,不具有确定性。
33、发明“集合论”(settheory)的人同样如此,他们从一个相当模糊的“集合”概念出发,而这种模糊导致了一些严重问题。
34、总之,这门学科的重要性已经十分明显,它已经引起了很多人的关心和重视。
35、来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
36、这个“爱情之问”很适合还处于暧昧期的情侣讨论来加深感情。
37、第一类中的集合以其自身为元素,第二类中的集合不以自身为其元素,假设令第一类集合所组成的集合为P,第二类所组成的集合为Q,则有:P={A∣A∈A},Q={A∣A∉A}。
38、以上文章观点仅代表文章作者,仅供参考,以抛砖引玉!
39、罗素悖论之所以称为是悖论,是因为它违反了形式逻辑中的矛盾律:矛盾律又称不矛盾律。它通常被表述为A不是非A,或A不能既是B又不是B。要求在同一思维过程中,对同一对象不能同时作出两个矛盾的判断,即不能既肯定它,又否定它。在传统逻辑里 ,矛盾律首先是作为事物规律提出来的,意为任一事物不能同时既具有某属性又不具有某属性。它作为思维规律,则是任一命题不能既真又不真。在罗素悖论中,罗素集R既属于自身又不属于自身,便是违反了矛盾律。
40、小说往往能浮现出现实的影子,事实上,科学研究一直在不断地经历各种理论危机。人类科学史的发展,就是基础理论一次次崩塌、再重建的过程。
41、a属于集合A,表述为a是集合A的元素,记作a∈A
42、既然这个集合本身,很显然也不是一个自然数,因为它是一个“不是自然数的‘所有东西’的巨大聚集”,那么,它必然也是它自己这个集合的成员之一(即,它是一个自含集合)。
43、我们都知道匹诺曹的故事,木偶皮诺曹一旦说谎话,他的鼻子就会变长。那么如果匹诺曹说:“我的鼻子正在变长”,会发生什么情况呢? 机智的你会发现好像哪里不对了:如果匹诺曹说了真话,那么他的鼻子不应该变长;而如果他说的是假话,他的鼻子会变长,他说的这句话就成了真话了。
44、古希腊数学家芝诺提出关于运动的不可分性的哲学悖论被称为芝诺悖论,有个著名的例子。在阿喀琉斯和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。当阿喀琉斯追到100米时,乌龟已经又向前爬了10米,于是,一个新的起点产生了;阿喀琉斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已经向前爬了1米,阿喀琉斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自己之间制造出一个距离,不管这个距离有多小,但只要乌龟不停地奋力向前爬,阿喀琉斯就永远也追不上乌龟!
45、不完备性定理是他在1931年提出来的,证明了任何一个形式系统,只要包括了简单的初等数论描述,而且是自洽的,它必定包含某些系统内所允许的方法既不能证明真也不能证伪的命题。
46、任意一个包含一阶谓词逻辑与初等数论的形式系统,都存在一个命题,它在这个系统中既不能被证明为真,也不能被证明为否。
69