1、DAQRI的智能头盔今年在CES上引起了轰动。AR可穿戴让设备用户可以用头盔看穿管道,或看到要覆盖的方向。
2、 用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。如,用户可以用手直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体繁荣重量,视野中被抓的物体也能立刻随着手的移动而移动。
3、待将来VR设备及技术成熟,我们观看电影的方式会有革命性的变化,一种沉浸式的观影方式将会流行,观众将置身于电影的故事现场,可随意改变观看的方式和角度。
4、应用系统开发工具。虚拟现实应用的关键是寻找合适的场合和对象,即如何发挥想象力和创造力。选择适当的应用对象可以大幅度地提高生产效率、减轻劳动强度、提高产品开发质量。为了达到这一目的,必须研究虚拟现实的开发工具。例如,虚拟现实系统开发平台、分布式虚拟现实技术等。
5、 数虎图像虚拟手术系统既可用于教学,也可让一般大夫进行模拟手术练习。其内容十分简单,很像一张普通游戏光盘,放入计算机内即可在屏幕上显示出一个虚拟的手术室及手术的详细过程,学生或一般大夫可在虚拟手术中反复训练高难度的操作方法,直至达到完美无缺为止。
6、虚拟现实技术演变发展史大体上可以分为四个阶段:有声形动态的模拟是蕴涵虚拟现实思想的第一阶段(1963年以前);虚拟现实萌芽为第二阶段(1963-1972);虚拟现实概念的产生和理论初步形成为第三阶段(1973-1989);虚拟现实理论进一步的完善和应用为第四阶段(1990-2004)。
7、 虚拟现实(virtualreality,VR)技术是由计算机生成的一种可以创建和体验虚拟世界的计算机系统。它通过视、听、触觉等作用于使用者,使之产生身临其境的交互视景的仿真。它综合了计算机图形、图像处理与模式识别,智能技术、传感技术、语言处理与音响技术、网络技术等多门科学,是现代仿真技术的进一步发展和应用。使用者借助必要的设备自然地与虚拟环境中的对象进行交互作用、相互影响,产生身临其境的感觉和体验,使人机交互更加自然和谐。
8、也被称之为混合现实。它是通过电脑技术,将虚拟的信息应用到真实世界,两种信息相互补充、叠加、并同时寸在于同一个画面或者空间中。其目的在于通过把计算机生成的虚拟对象与真实环境融为一体的方式来增强用户对真实环境的理解。
9、由于虚拟现实的立体感和真实感,在军事方面,人们将地图上的山川地貌、海洋湖泊等数据通过计算机进行编写,利用虚拟现实技术,能将原本平面的地图变成一幅三维立体的地形图,再通过全息技术将其投影出来,这更有助于进行军事演习等训练,提高我国的综合国力。
10、分布式虚拟现实是今后虚拟现实技术发展的重要方向。随着众多DVE开发工具及其系统的出现,DVE本身的应用也渗透到各行各业,包括医疗、工程、训练与教学以及协同设计。仿真训练和教学训练是DVE的又一个重要的应用领域,包括虚拟战场、辅助教学等。另外,研究人员还用DVE系统来支持协同设计工作。近年来,随着Internet应用的普及,一些面向Internet的DVE应用使得位于世界各地多个用户可以进行协同工作。将分散的虚拟现实系统或仿真器通过网络联结起来,采用协调一致的结构、标准、协议和数据库,形成一个在时间和空间上互相耦合的虚拟合成环境,参与者可自由地进行交互作用。特别是在航空航天中应用价值极为明显,因为国际空间站的参与国分布在世界不同区域,分布式VR训练环境不需要在各国重建仿真系统,这样不仅减少了研制费和设备费用,减少了人员出差的费用以及异地生活的不适。
11、 虚拟现实在医疗领域的应用主要有:虚拟手术,数字医院,医学模拟演示,实训模拟演示,实训教学演示,医院虚拟仿真系统,虚拟医学仿真,虚拟现实技术在医学手术仿真训练等。使用计算机技术(主要是计算机图形学与虚拟现实)来模拟、指导医学手术所涉及的各种过程,在时间段上包括了术前、术中、术后,在实现的目的上有手术计划制定,手术排练演习,手术教学,手术技能训练,术中引导手术、术后康复等。
12、 VR虚拟现实里面的场景都是虚拟的构想出来的。在VR的虚拟世界里你可以跨越时间与空间,去体验到很多平常无法体验到的场景与环境,如去体验爬珠穆朗玛峰、去经历和体验曾经发生的事或者虚构的未来等等。
13、城市规划/地理交通。VR技术对于政府在城市规划的工作中起到了举足轻重的作用。用VR技术不仅能十分直观的表现虚拟的城市环境,而且能很好的模拟各种天气情况下的城市,可以一目了然的了解排水系统,供电系统,道路交通,沟渠湖泊等等;能模拟飓风、火灾、水灾、地震等自然灾害的突发情况。对于政府在城市规划的工作中起到了举足轻重的作用。
14、沉浸性是虚拟现实技术最主要的特征,就是让用户成为并感受到自己是计算机系统所创造环境中的一部分,虚拟现实技术的沉浸性取决于用户的感知系统,当使用者感知到虚拟世界的刺激时,包括触觉、味觉、嗅觉、运动感知等,便会产生思维共鸣,造成心理沉浸,感觉如同进入真实世界。
15、未来,VR看房极有可能成为平台级入口,不仅所有的VR样板间可以集成在一个平台,家装、家居也会集成在这个平台,因此,对资源的把控能力将决定平台的成与败。
16、我国作为应试教育大国,VR+教育要普及开来也还有很长的路要走。不过相信在未来,这些新兴的教育形式必将因其优越的一面而在未来的教育领域中会占有相当重要的一席之地。
17、 在虚拟环境中,可以建立虚拟的人体模型,借助于跟踪球、HMD、感觉手套,学生可以很容易了解人体内部各器官结构,这比现有的采用教科书的方式要有效得多。Pieper及Satara等研究者在90年代初基于两个SGI工作站建立了一个虚拟外科手术训练器,用于腿部及腹部外科手术模拟。这个虚拟的环境包括虚拟的手术台与手术灯,虚拟的外科工具(如手术刀、注射器、手术钳等),虚拟的人体模型与器官等。借助于HMD及感觉手套,使用者可以对虚拟的人体模型进行手术。但该系统有待进一步改进,如需提高环境的真实感,增加网络功能,使其能同时培训多个使用者,或可在外地专家的指导下工作等。另外,在远距离遥控外科手术,复杂手术的计划安排,手术过程的信息指导,手术后果预测及改善残疾人生恬状况,乃至新型药物的研制等方面,VR技术都有十分重要的意义。
18、(3)构想性是虚拟现实是要能启发人的创造性的活动,不仅要能使沉浸于此环境中的学生获取新的指示,提高感性和理性认识,而且要能使学生产生新的构思。(4)动作性是指学生能以客观世界的实际动作或以人类实际的方式来操作虚拟系统,让学生感觉到他面对的是一个真实的环境。
19、交互性。交互性是指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程序(包括实时性)。例如,用户可以用手去直接抓取环境中的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视场中的物体也随着手的移动而移动。
20、(3)构想性是虚拟现实是要能启发人的创造性的活动,不仅要能使沉浸于此环境中的学生获取新的指示,提高感性和理性认识,而且要能使学生产生新的构思。(4)动作性是指学生能以客观世界的实际动作或以人类实际的方式来操作虚拟系统,让学生感觉到他面对的是一个真实的环境。
21、多感知性指除一般计算机所具有的视觉感知外,还有听觉感知、触觉感知、运动感知,甚至还包括味觉、嗅觉、感知等。
22、多交互手段,摆脱传统的鼠标、键盘输入方式,运用多种交互手段,支持更多的设计行为。
23、自主性。是指虚拟环境中物体依据物理定律动作的程序。例如,当受到力的推动时,物体会向力的方向移动、翻倒、或从桌面落到地面等。
24、一是应用场景和应用路径尚不清晰。国内企业对虚拟现实技术的特征、应用方法等缺乏基本了解与整体把握,对制造业各环节与虚拟现实技术的结合点尚不清晰,加之应用场景设计缺失,产业标准不统难以对工业技术与虚拟现实技术的融合应用形成明确的产业化引导,从而制约了应用范围的拓展。
25、 硬件平台:由于虚拟世界本身的复杂性及计算实时性的要求,产生虚拟环境所需的计算量极为巨大,这对中心计算机的配置提出了极高的要求。目前,国外的VR系统一般配有SGI或SUN工作站,大型的VR系统,采用的是计算机并行处理系统。当前的研究趋于桌面虚拟现实系统,它价格较低、易于实现同时又能满足VR的部分特征要求,因而将会得到更为广泛的应用。
26、沉浸性是虚拟现实技术最主要的特征,就是让用户成为并感受到自己是计算机系统所创造环境中的一部分,虚拟现实技术的沉浸性取决于用户的感知系统,当使用者感知到虚拟世界的刺激时,包括触觉、味觉、嗅觉、运动感知等,便会产生思维共鸣,造成心理沉浸,感觉如同进入真实世界。
27、模拟现实技术在军事上的应用不仅仅是场景演试,军事训练、作战仿真等都可以运用VR技术,以达到理想的效果。目前虚拟现实技术在军事领域的应用主要有以下几个方面:熟悉虚拟战场环境、模拟作战场景、布局作战策略等。
28、随着社会生产力和科学技术的不断发展,各行各业对VR技术的需求日益旺盛。VR技术也取得了巨大进步,并逐步成为一个新的科学技术领域。
29、尽管理论上讲能够建立起高度逼真的,实时漫游的VR,但至少现在来讲还达不到这样的水平。这种技术需要强有力的硬件条件的支撑,例如速度极快的图形工作站和三维图形加速卡,但目前即使是最快的图形工作站也不能产生十分逼真,同时又是实时交互的VR。其根本原因是因为引入了用户交互,需要动态生成新的图形时,就不能达到实时要求,从而不得不降低图形的逼真度以减少处理时间,这就是所谓的景物
30、构想性也称想象性,使用者在虚拟空间中,可以与周围物体进行互动,可以拓宽认知范围,创造客观世界不存在的场景或不可能发生的环境。构想可以理解为使用者进入虚拟空间,根据自己的感觉与认知能力吸收知识,发散拓宽思维,创立新的概念和环境。
31、随着虚拟现实技术与产业的共同发展,制造业虚拟现实技术的应用案例不断涌现,应用模式和应用路径也在进一步成熟。比如,在研发环节,虚拟现实技术可以展现产品的立体面貌,使研发人员能够全方位构思产品的外形、结构、模具及零部件使用方案。特别是在飞机、汽车等大型装备产品的研制过程中,运用虚拟现实技术能大幅提升对空气动力学的把握和产品性能的精准度。波音公司将虚拟现实技术应用于777型和787型飞机的设计上,通过虚拟现实的投射和动作捕捉技术,完成了对飞机外形、结构、性能的设计,所得到的方案与实际飞机的偏差小于千分之一英寸。据统计,采用虚拟现实技术设计的波音777飞机,设计错误修改量减少了90%、研发周期缩短了50%、成本降低了60%。
32、在亚洲,日本虚拟现实技术研究发展十分迅速,同时韩国、新加坡等国家也在积极开展虚拟现实技术方面的研究工作。
33、硬件技术的发展。虚拟现实所要求的超级计算、图形图像处理、图像投影及交互等虚拟环境构建硬件技术将得到持续的发展,成本大幅度下降,从而促进虚拟现实技术的应用和普及。
34、虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入做出实时响应,并分别反馈到用户的五官。传感设备是指三维交互设备。常用的有立体头盔、数据手套、三维鼠标、数据衣等穿戴于用户身上的装置和设置于现实环境中的传感装置,如摄像机、地板压力传感器等。
35、(Immersion)——又称临场感,指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的。
36、福特汽车公司设计汽车之前,,使用虚拟现实制作出物理原型。在福特公司的Immersion实验室里,设计师可以使用OculusRift驾驶汽车,甚至让客户先进行试驾。
37、 早在1985年,美国国立医学图书馆就开始人体解剖图像数字化的研究,并由美国科罗拉多州立医学院将一具男性尸体和女性尸体分别做了1mm和0.33mm间距的CT和MR扫描,所得图像数据经压缩后,建立了“可视人”并于1995年出版发型了CD盘片。学生可以在计算机屏幕上对“可视人”进行冠状面和矢状面而对解剖,并可把局部的图像进行缩放。这一举措对解剖学的教学来说有着非同一般的意义。德国汉堡大学医用数学和计算机研究所进行的解剖三维可视化研究虚拟人体图谱,受试者的CT和MRT横截面映像或者组织学切片起空间模型。学生则可以自由地在三维人体空间进行各种操作。北卡罗来纳大学在1992年就开始进行超声图像与虚拟现实相结合的研究,把实时的超声扫描图像经信号变换传输到医生所戴的头盔显示器的,医生依赖于头盔的“看穿”能力。能看到超声图像映迭到病人身体上。1995年,在Internet上出现了“虚拟青蛙解剖”。“实验者”在网络上相互交流,发表自己的见解,甚至可以在屏幕上亲自动手进行解剖,用虚拟手术刀一层一层的分离青蛙,观察它的肌肉和骨骼组织。随着计算机技术的迅速发展,虚拟现实技术现在已经比较成熟的应用与医学之中。
38、感知性:在一般计算机的视觉感知的基础上,还具备听觉、力觉、触觉、味觉、嗅觉等感知,非常的全面,让人们体验到真实世界所带来的感觉。
39、存在感指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该达到使用户难辨真假的程度。
40、 一般的VR系统主要由专业图形处理计算机、应用软件系统、输入设备和演示设备等组成,即人们可以通过视觉、听觉、触觉等信息通道感受到设计者思想的高级用户界面。
41、多感知性 指除一般计算机所具有的视觉感知外,还有听觉感知、触觉感知、运动感知,甚至还包括味觉、嗅觉、感知等。理想的虚拟现实应该具有一切人所具有的感知功能。 存在感 指用户感到作为主角存在丁模拟环境中的真实程度。理想的模拟环境应该达到使用户难辨真假的程度。 交互性 指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。 自主性 指虚拟环境中的物体依据现实世界物理运动定律动作的程度。
42、指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。
43、VR在医学方面的应用具有十分重要的现实意义。在虚拟环境中,可以建立虚拟的人体模型,借助于跟踪球、HMD、感觉手套,学生可以很容易了解人体内部各器官结构,这比现有的采用教科书的方式要有效得多。