1、其中有一个故事叫七岁时高斯进了st。catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把1到100的整数写下来,然后把它们加起来!」
2、父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他定能两全齐美。父亲终于同意让儿子试试看。
3、当然,这也是一个等差数列的求和问题(公差为1项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。ET贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有高斯写的答案是正确的,而其高斯的孩子们都错了。高斯没有明确地讲过,高斯是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。
4、高斯的才华使老师彪特耐尔十分激动,并感到内疚。原来,他不安心在乡村小学工作,看不起农民的孩子。这件事发生以后,他认真备课,努力教学。
5、1795年高斯进入哥廷根(Gttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经明白如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或但是对于正十一边形的尺规作图法,两千年来都没有人明白。而高斯证明了:
6、高斯对数学的兴趣越来越浓,数学上的定理、公式和求证方法一个又一个地被他发现和证实。
7、但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」(高斯的故事)。
8、高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对于数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。
9、高斯19岁的时候,本来他打算学法律的,结果不经意间解决了一个2000年的数学难题,那就是只用直尺和圆规17等分圆周。
10、当他的第二任妻子在长期的病痛后死于1831年时,他的其中一个女儿Therese接手了整个家庭并且照顾高斯直到他的生命结束。他的母亲则从1817年居住在他家直到1839年她死去。
11、 高斯还在上小学三年级的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,他的题目是:
12、老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。(高斯的故事)。
13、高斯八岁时进入乡村小学读书。一天,数学老师出了这样一道题目:“你们今天替我算从1加2加3一直到100的和。”
14、1796年3月30日,年仅18岁的高斯,又有了堪称数学史上最惊人的发现,他用代数方法解决两千年来的几何难题,而且找到了只使用直尺和圆规作圆,内接正17边形的方法也称17边形直尺圆规画法。为了纪念他少年时的这一最重要的发现,高斯表示期望死后在他的墓碑上能刻上一个正17边形。1799年,高斯又证明了一个重要的定理:任何一元代数方程都有一个根,这一结果数学上称为代数基本定理,也被称做高斯定理。1801年,高斯出版了他的《算术论文集》。高斯在23岁的时候开始研究天文,并解决了测量星球椭圆轨道的方法,也称椭圆函数。
15、同学们,欢迎来到数学微听读。今天,老师给大家分享一下,数学家高斯小时候的故事。
16、还不到半个小时,小高斯拿起了他的石板走上前去.“老师,答案是不是这样?”
17、这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。
18、 高斯因为家里穷,冬天夜晚吃完饭后。父亲就会要求高思上床睡觉。这样可以节省燃料和灯油的开销。可是高斯很喜欢看书。他通常会用一种叫芜菁的植物把芜菁当中挖空。塞进用粗棉卷成的灯芯,淋上油脂,点火看书。
19、老师头也不抬,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
20、德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭.高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误.
21、当1830年前后匈牙利的波尔约(Janos Bolyai)和俄国的罗巴切夫斯基独立地发表非欧几何学时,高斯宣称他大约在30年前就得到同样的结论。高斯也没有发表特殊复函数方面的工作,可能是因为没有能从更一般的原理导出它们。因此这一理论不得不在他死后数十年由其他数学家从他著作的计算中重建。
22、高斯还证明了当且仅当N=2^(2^n)+1时,能够用尺规N等分圆周。从此高斯对数学的兴趣大增,并走上了数学研究的道路,成了一名伟大的数学家。
23、每当有考试时他们有个习惯:第一个做完的就把石板面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。
24、1795年高斯进入哥廷根(G.ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经知道如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或但是对于正十一边形的尺规作图法,两千年来都没有人知道。数学家高斯的故事篇2高斯(C.F.Gauss,130-1823)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和高斯生活了10多年后因病去世,没有为高斯留下孩子。迪德里赫后来娶了罗捷雅,第二年高斯们的孩子高斯出生了,这是高斯们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重高斯的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。
25、1796年高斯19岁,发现了正十七边形的尺规作图法,解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律”。
26、 品名人传记,悟别样人生。大家好,我是梁燕老师,今天与大家分享一位著名数学家高斯的故事。
27、同时作为一个物理学家,他与威廉。韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。
28、高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。
29、1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmetic-geometricmean)。
30、小欧拉将原来的40米边长截短,缩短到25米。将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"
31、高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法.高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的.他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看.在他的鼓励下,高斯以后便在数学上作了一些重要的研究了.
32、有一天这个数学老师心情不好,在上上午最后一节数学课临下课时突然面色沉下来,班上的学生都担心数学老师可能又会出数学题来“刁难”了。果不所料,老师在黑板上快速地写上一道题“请计算:1+2+3+4+5+……+100!”并对全班同学说:“你们算一算从1开始一直加到100的和是多少?谁算不出来,就不准回家吃饭!”,同学们听后不禁担忧起来,这复杂的算式什么时候才能算出结果呀?但也是不约而同地拿出笔在小石板上沙沙地算起来。数学老师看到学生都给自己出的题目唬住脸上露出不易察觉的笑容,心里暗想,昨天自己先算一遍了,看你们怎么算!
33、 兰衍局
34、在长期的测量中,他发明了还日光反射仪,可以将光束反射至450公里外的地方。但是要利用日光反射仪进行精确测量就必须解决曲面和投影的理论关系,高斯在这段时间开始了对曲面和投影的理论研究。这方面的研究成果为后来微分几何的创立奠定了基础。在非欧氏几何的研究中,他独自提出和证明欧氏几何的平行公设不具有物理的必然性,由于他担心同时代的人不能理解该理论,最终没有发表。但后来量子力学证明了他的观点的正确性。
35、 高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之在历史上影响之大,能够和阿基米德、牛顿、欧拉并列,有“数学王子”之称。
36、1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为高斯支付各种费用,送高斯入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当高斯为自己的前途、生计担忧而病倒时虽然高斯的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但高斯没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援高斯。公爵为高斯付诸了长篇博士论文的印刷费用,送给高斯一幢公寓,又为高斯印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。高斯在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。
37、大数学家欧拉是一个被学校除了名的小学生。回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。
38、老师和助教去拜访高斯的父亲,要他让高斯理解更高的教育,但高斯的父亲认为儿子就应像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是去找有钱有势的人当高斯的赞助人,虽然他们不明白要到哪里找。经过这次的访问,高斯免除了每一天晚上织布的工作,每一天和Bartels讨论数学,但不久之后,Bartels也没有什么东西能够教高斯了。
39、高斯的确气恼,但他仍克制住,不受围观者嘈杂吵嚷的影响而冷静思考。
40、高斯在数学上的成就十分广泛,在微分几何、非欧几何、超几何级数、数论以及椭圆函数论等方面均有开创性贡献,并且在天文学、大地测量学和磁学的研究中引入数学方法,取得巨大的成就。1855年2月23日,79岁的高斯在哥廷根逝世。为了纪念他,哥廷根大学的校园里建立了一个正17边形台座的高斯雕像。
41、高斯有六个小孩。高斯的所有小孩当中,据说Wilhelmina最接近他的天赋,但她年轻时就去世了。高斯与MinnaWaldeck也有3个小孩:Eugene(1811–1896),Wilhelm(1813–1879)andTherese(1816–1864)。Therese照顾著整个家庭直到高斯去世,而她结婚。
42、在进入哥廷根大学的同年,高斯发现了质数分布定理和最小二乘法。接着他又转入曲面与曲线的计算,并成功得到高斯钟形曲线,这一曲线在概率计算中大量使用。次年,年仅17岁的他首次用尺规构造出了规则的17角形,为欧氏几何自古希腊以来做了首次重要的补充。
43、数学家们之所以成为数学家,是因为他们与生俱来的对数字特有的敏感力以及他们对数学的热爱和坚持。数学这个领域从来都不是浅显的,它需要我们一代又一代人去探索,去钻研。
44、这些关於数论的工作对代数数的现代算术理论即代数方程的解法)作出了贡献。
45、在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。高斯发现姐姐的儿子聪明伶利,因此高斯就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为高斯所做的一切,深感对高斯成才之重要,高斯想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。
46、李腾,现任威海市塔山小学数学教师。十几年的教学生涯,执着于用欣赏的眼光看待孩子,让尊重伴随孩子的成长。任教期间,执教课曾获省优质课一等奖,市课程资源二等奖,区课堂大赛一等奖等多项奖项。
47、相信高斯的故事让我们数学人更加坚定了自己的道路,虽然我们很平凡,没有超人的天赋,但我们有毅力,相信我们是可以创造奇迹的!
48、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。
49、父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了ー个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。
50、高斯所取得的成就,一方面来自天赋,一方面来自勤奋。他家里很穷,冬天,爸爸为了节省灯油,吃完晚饭就要他上床睡觉,高斯自己做了个油灯,在微弱的灯光下全神贯注地读书到深夜。15岁时,他就读了牛顿、欧拉、拉格朗日等著名数学家的数学著作,并熟练地掌握了微积分理论。高斯的成功,不是天上掉下来的,而是刻苦学习得来的。他把科学研究工作看得高于一切。妻子病重时,高斯正在钻研一个深奥的数学问题。仆人几次来叫他:如果您不立刻过去,就不能见她最后一面了!高斯却说:叫她等一下,等到我过去。直到他把手头的研究告一段落,这才勿勿跑去看望妻子。
51、小高斯很快地检查了一遍,高声说:“老师,没错!”说着走下座位,把小石板伸到老师面前。
52、如果说这仅仅是小技巧的话,那么在他16岁的时候预测到了非欧氏几何的必然产生,并且还推导出了二项式定理的一般形式,并发展了数学分析的理论,就不得不承认他天才的智慧了。在进入哥廷根大学的同年,高斯发现了质数分布定理和最小二乘法。接着他又转入曲面与曲线的计算,并成功得到高斯钟形曲线,这一曲线在概率计算中大量使用。次年,年仅17岁的他首次用尺规构造出了规则的17角星,为欧氏几何自古希腊以来做了首次重要的补充。在1807年的时候,高斯成为了哥廷根大学的教授和当地天文台的台长,于是他开始涉足于小行星的研究,他利用自己创立的三次观测决定小行星轨道的计算方法,成功计算出了谷神星和智神星的轨道。此后,天文界对小行星轨道的计算几乎都采用这种方法。1818年至1826年,高斯领导了汉诺威公国的大地测量工作,他利用测量平差和求解线性方程组的方法,使测量的精度得到了极大的提升。在此期间,他白天测量,夜晚计算,在刚开始的五六年间,他经历了上百万次的大地测量数据计算,后来他转入测量数据的研究和计算,从中推导了由椭圆面向圆球面投影时的公式,这些理论在今天仍有很大的应用价值。在长期的测量中,他发明了日光反射仪,可以将光束反射至450公里外的地方。但是要利用日光反射仪进行精确测量就必须解决曲面和投影的理论关系,高斯在这段时间开始了对曲面和投影的理论研究。这方面的研究成果为后来微分几何的创立奠定了基础。在非欧氏几何的研究中,他独自提出和证明欧氏几何的平行公设不具有物理的必然性,由于他担心同时代的人不能理解该理论,最终没有发表。但后来量子力学证明了他的观点的正确性。
53、虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在高斯快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。
54、老师低头一看,只见上面端端正正地写着“5050”,不禁大吃一惊。他简直不敢相信,这样复杂的数学题,一个8岁的孩子,用不到一分钟的时间就算出了正确的得数。他忙问小高斯:“你是怎么算的?”小高斯回答说:“我不是按照3的次序一个一个往上加的。老师,你看,一头一尾的两个数的和都是一样的:1加100是102加99是103加98也是10.....一前一后的数相加,一共有50个10101乘得到50”
55、7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,高斯进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),高斯对高斯的成长也起了一定作用。